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USING INFLUENCE DIAGRAMS

TO SOLVE THE CALIBRATION PROBLEM

1. INTRODUCTION

A measuring instrument measures a unit and records an observation y.
The "true” measurement, x, of the unit is to be inferred fromy. If p(y|x)

is the likelihood of y given x and x has prior p(x), then by Bayes' Theorem

p(x|y) a p(y|x)p(x).

Let Xy and 002 be the mean and variance of p(x). We will assess the

likelihood, p(y|x). using a linear regression model
»*
y=a+B(x-x)+¢€ (1.1)

where x is specified and a priori (a.B) 1 x 1 € and € given % is N(O,og)

with o specified. (These assumptions could of course be relaxed; e.g. 02

unknown, € dependent on x, etc. However our assumptions are convenient a:nd

T

sufficiently general to provide conclusions of general interest.)
The "center"”, x*. of the likelihood model and the prior for x are

*
intertwined. The natural choice for x is the mean of the prior for x.

* 3 » . -
namely » = x This is reasonable since our attention is focused on
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calculating p(x]y). The line., with x* =X isy =a + B(x - xo) where a o'«

M2 B are unknown and of course y cannot be observed without error. See Figu:e
.:-’: Y] .
- 1.1. Of course the prior for (a,.B) depends on x = X, and we may write
0
o0 p(a.B) = p(a|B.xo) p(B) since, in general, only a depends on X,
o Figure 1.2 is an influence diagram describing the logical and
. ’\
.:: statistical dependencies between unknown quantities, decision alternatives
"
-
%;j and values (losses or utilities). The decision may be an estimate for x
2, given y. If the worth or loss is
.-‘..
':'-v 2
‘o w(d,x) = (d - x)
o \:‘
2 then the optimal decision will be the posterior mean for x given y.
- The Calibration Experiment Y
,:x The purpose of the calibration experiment is to learn about (#15) S0
"~ that given a future observation y we can reduce our uncertainty about a
j: future “true” measurement x. To calibrate our measuring instrument, we
AN
< record n measurements -, "o
S Yy = (¥{.¥o.---.¥.)
s ) ; 1°72 n
- on n units all of whose "true”™ measurements,
e X = (xl.xz.....xn)
i are specified beforehand. Based on our prior, p(x). for a future x (call
;V x{) and our regression model (1.1), our problem is to determine
v X = (xl.x2....,xn) (subject to feasibility constraints) so as to minimize
?L some overall loss function. x is called the experimental design for the
R
N calibration experiment.
1%
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The following assumptions will be made relative to the calibration
experiment.
Assumption 1. The future "true value", Xgo is independent of (a.B). x and
y. The future observation, Yo is independent of (x.y) given (a.fB).

Assumption 2. The worth function w(d.xf) is a loss function and depends

‘: only on d (the decision regarding X¢ taken at the time we observe yf) and
the "true value” X For example, we are ignoring the cost of performing

‘k the experiment.

g Assumption 3. The feasible region, R, for the experimental design, x, is

4 bounded. That is, infinite Xy values are not allowed in practice. We sech

3 an optimal experimental design subject to x € R.

- Figure 1.3 is an influence diagram describing the logical and
statistical dependencies between the unknown quantities and decision

i variables in our problem. Figure 1.4 shows the influence diagram after

E (a.B) have been eliminated by computing the posterior distribution,

N p(a.B|x.y) and then calculating

% P(ygl x.y.x;) = ff p(y;| a.B.x;) p(a.B| x.y) da dB.

; [Influence diagram operations are discussed in Shachter (198G) and Barlow

. (1987).]

2 If we take squared error loss, (d - xf)2 , as our worth function wherc

? X¢ is the future "true' measurement of a unit, then d is our estimate of N

‘ after we observe a future Y- Note that at the time of decison when we

j estimate x., we know x, y and Y- Since we do not know Xp at this time.

‘g p(xflyf.y.x) must be found via Bayes' Theorem and
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2 (s ,
J(d - %) plxplvpy.x) dx;
-0
calculated. The minimizer is the posterior mean
d = E(xgly;.y.x)
so that after observing Yg. our worth function is
Var(xf|yf,y.x).
At the design stage, we of course do not know yg or the test resulte y

Hence, using the method of Bayesian decision analysis we must minimize

DEF
Eyley ly.x Min E_ ly 'y.x[w(d.xf)lyf,y.x] = W(x) (1.2)
f d £'f
with respect to x = (xl.xz....,xn). W(x) is the final expected worth

function with respect to the experimental design x.

For a more detailed discussion of this problem and references to othc:
approaches see Chapter 10 of Aitchison and Dunsmore (19S0). Hoadley (1970)
discusses the calibration inference problem in some detail and points out

the difficulties with the maximum likelihood estimator for x,. given an

f
observation Ye and data ((xi.yi). i =1,2,....n} from a calibration
experiment. Brown (1982) and Brown and Sundberg (1985) extend Hoadley's
results using a multivariate formulation. However they do not consider tl
problem of optimal Bayesian experimental design. The definitive reference
for Bayesian design for linear regression is Chaloner (19S4). The objective

of this paper is to discuss the calibration experimental design problem a:d

results for special cases.
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Summary of Results

Based on the likelihood it is shown that the experimental design ma:y b

n n
summarized by n, x - x_ = 3(x, - x }/n and v 2. S(x, - x )2/n where
o i o ps PR o

Ix -~ x | <v_.
o X
If B is known, W(x) depends only on n and the optimal design corresponds 1t

taking n as large as possible. The values of x are immaterial. If a is

n
known, W(x), depends only on 2(xi - xo)2 and is decreasing in v for fixed
i

n.

If both a and B are unknown, the optimal design can be found by
performing a three dimensional search over (n.ilvx). W(x) can be evaluated
numerically by using three nested subroutines when the prior for (a,B) is
bivariate normal and w(d.xf) = (d - xf)2. For this case and Xg N(xo.aoz).
we can explicitly calculate W(xlob = 0). Also for this case, W(xlx1 = x

2:

LEX o= xo) can be numerically calculated using two nested subroutincs.

2. WORTH OF INFORMATION GAINED

Suppose we perform the calibration experiment x. Then

Mén Exf[w(d.xf)] - W(x) (2.1)

is a measure of the expected reduction in our uncertainty about Xe {when
w(d,xf) = (d - xf)2) as a result of performing the calibration experiment.
Lemma 2.1 shows that this difference is > 0. This is the familiar expected
information inequality in our notation [Raiffa and Schlaifer (1961)]. It

gives us easily computed upper bounds on W(x) as a result of performing the
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calibration experiment. This is useful in checking computer calculations.
From Figure 1.3 we see that at the time of decision (e.g. estimating xf) we
know x, y, and Yg- It is intuitively clear that when w(d.xf) is a loss
function the final expected value will be greater the less informationr we
have at the time of decision.

The following results stated as lemmas will be used in the next
section.
Lemma 2.1. If the range of possible decisions, d, does not depend on x or
then

Min E

E . E [w(d.x) ly..y.x]
Y|X Yf|Y-x d xflyf.y.x f f

IA

E Min E [w(d.x,.)|y.]
Ve a Xelvg £

(VaN

Mén Exf[w(d.xf)]

Proof. We will prove the first inequality. Let

in Exflyf[w(d.xf)lyf] = Exf|yf(W[do(yf)-xf]|yf)

so that

Min E

Eyx By lyox M0 By fyy adDi(8xg) = wldg ) x v gy ox) < 0.

We need only show

EyIx EyfIY-x Exflyf.y.x{"[do(yf)'xf]'Yf'y-x)

= E {[wld (y.).x1ly 3}

Ey |
Ye XYy
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From Bayes® theorem and the fact that X is independent of (x.,y) we have

P(x; ¥ % ¥)p(y|x) = [p(ylx;.¥g . x)P(xp. v )/P(y %) Ip(y |x)

2"a

N = P(yly; . x)p(x,.¥,)- 1
. The result follows by an interchange in the order of integration. R
W The second inequality follows in a similar way. QLD ‘
’ .
3 Remark. E Min E [w(d.x_.)|y.] corresponds to not performing the ’
ly f f

: Ye a4 XV p
¥ calibration experiment (i.e., n = 0). When w(d,xf) = (d - xf)2 the above :
. inequalities become
- .
:: Eylx Eyf|Y-X Var(xflyf.y.x) < Eyf Var(xflyf) < Var(xf) ;
- It follows from Lemma 2.1 that the expected worth function can only
‘% decrease if we perform additional calibration experiments. We use this fact E
RS “
X later. (This would not be true if w(+,+) depended on (x.,y).) '
" !
1! Lemma 2.2. Under the assumptions of Lemma 2.1 and w(d.xf) a loss functio:n K
L) .
" W(xl.....xn) > W(xl.....xn.xn+1) -

where the first n coordinates are the same on both sides of the inequality. :
: 3. LIKELIHOOD AND THE OPTIMAL EXPERIMENTAL DESIGN 5
H Under the assumption that observation errors, {€i| i=1,2,...,n} are

independent N(O.az). but without specifying prior distributions, we can K
- determine some of the structure of the optimal experimental design. This )
) can be done using the sufficient statistics for (a.,B) corresponding to our .
: likelihood model. As noted before, the purpose of the calibration :
N .
_E experiment is to learn about (a.B). The likelihood for (a.B) given thec d.:.
N .

is
3 g
- ~

_v‘.-'.:.'.\c’\ _‘¢‘~,)( J'_J'ﬁu‘f\.\- - f *xd\f\ L
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g 2.2
L(a.BIData.xo) a exp{-E[yi -a - B(xi - xo)] 7207} (3.1)
i
A priori assume a 1L B 1 € and let E(a) = a, E(B) = b, Var(a) = aa2. and
Var(B) = 0b2 . Define
e, =y, -a- b(xi - xo)

and rewrite

i - - ﬁ(xi—xo)

[yl - a- b(xi_XO)] - (a_a) - (B—b)(xi—xo)
ey - (a-a) - (B-B)(x; - x)

so that

L(a.B|Data,x0)

2 2 2 2 2
a exp{-[n(a - a)” + (B - b)" 3(x; - x ) -23e;[(a - a) +

i i

n
(B - b)(x; - x;)] + 2(a = a)(P - b) 3x; - x)1/20°).  (3.2)

i

n n 2 n n

Clearly n, f(xi - xo). f(xi - xo) v 2= fei and z, = fei(xi - xo) are

sufficient statistics for (a.f) since X, a. b and o are specified. It

follows that the posterior density for (a,B) also depends on the data only

n n 9
through n, 3(x, - x ), Z(x, - x )7, 2., and z
e o’ 1M o

1’ 2°
Theorem 3.1. W(x) depends on x only through n, X - X, = 2(xi - xo)/n and
i

n
v? - 3(x, - x )2/n.
b4 1 i o

N. B. This is true for all worth functions w(d.xf) and priors on (a.f) and

X The worth function can also depend on n, x - X, and v, in this casc.

£
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Proof. The purpose of the calibration experiment is to learn about (a.f3). 3

Since n, x - Xor Vo Iy and z, are sufficient statistics for (a.B). the tce-

results, y. may be summarized by z, and Zy- Hence from (1.2) we need only

show that the joint distribution of (21.22) depends on x only through n,

X - x_and v_. .
o X :

It is easy to show that (21.22) given {(a.B) is bivariate normal wherc ;

z, given (a.p) is N
n ) r

N[n(a - a) + (B - b) 3(x; - x_). no"] :

1 v

and z, given (a.B) is

n n

2 2 2 2 ‘

N[(a - a) f(xi -x,)+ (B -b) f(xi - X)) .0 f(xi - %X)7] :

while .

o D
Cov(zl. z2|a.B) =0 f(xj - xo). QED

Corollary 3.2. If B is known, i.e. o, = 0, then W(x) depends on x only R

[

through n. The "levels” (xl.x2,....xn) are immaterial and we might just as :
well take

X1 =% = =X T % :

or any other values that we like. ;

Proof. If we are certain that  =b; i.e. o, = 0, then (3.2) becomes "

L( _ SN2 o 2
aIData.xo) a exp{-[n(a - a)” - 2Eei(a - a)}/207}.
1

n n
Hence n and z, = Je, = 3[y, - a - b(x, - x )] are sufficient for a.
1 1 1 i i o]
Since z, given (a.B=b) is
{

N[n(a - a). n02]

ARARARP | SR Py
[
<

it follows that W(x) depends on x only through n. QD

LR S

L e A )

ML
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Corollary 3.3. If a is known, i.e. o, = 0, then W(x) depends on x only
- n 2
through E(Xi - xo) . Furthermore, for fixed n, W(x) is decreasing in Vo <
- ! -
! In this case, W(x) is minimized for those x belonging to R for which v, ie T
P :
' maximum.
Proof. If o = O, then (3.2) becomes N
_ a
Y
L 22 2 2 5.2 X
(B|Data, x ) a exp{-[(B-b)° I(x.-x )° -2(B-b)Se (x.-x ))/20°}. .
o , 170 ] 171 7o =
y n 5 n g
5 Hence f(xi - xo) and z, = ?ei(xi - xo) are sufficient for B. Since z, =
; given (a = a, B) is 2
: n n i
. 2 2 _ 2
N[ (B b)f(ki xo) ., O f(xi xo) ] 3
it follows that when a = a is known, W(x) depends on x only through k
. n g
3(x, - x )2.
i o
1 73
Y n 5 D o g
3 Suppose 3(x, - x )~ < 3(x,' - x_ )°. Clearly we can find x such ti - <
y p 1 (¢ ;1 o n+1 <
B n n :
. 2 2 2 N
| f(xl xo) - f(xl xo) * (xn+1 - xo) .
n+l .
= E(X. - X )2- :
1 1 (o] e
A
From Lemma 2.2 in section 2 we have X
W(xl.....xn) 2 W(xl.....xn,xn+l) . :
3 n 2 ‘::l
: Hence W(x) is decreasing in 2(xi - xo) for fixed n. Qi i Y
l L
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Determining the Structure of the Optimal Experimental Design

Since

2 -2
2(x, - x)"/n > O
P

it follows that

n
Ix, - x )2/n ~ (%X, - x )2 2 0
;1 o i o

th -2
3(x, - x +x_ - x)/n
1 i o o
and Ix - x | ¢ v_.
o x
Consequently, the minimization problem with respect to x can be transformed
to a minimization problem with respect to only three variables, namely n a:c
Ix - x | ¢ v._.
o x
Since x - X, and v, are symmetric functions of an experimental design x.
it follows that, for fixed n, any permutation of the coordinates of an
experimental design solution is also a solution (if allowed by the
feasibility constraints). Figure 3.1 shows the nature of the possible
(x].x2) solutions for Vo fixed and n = 2. The darkened arcs on the
circumference show the possible designs for a fixed A {(up to permutations
of coordinates). For fixed v possible solutions are traced out by the
intersection of the line x - X, = ¢ with the circumference of the circle
X 2 + X 2 =v 2 as ¢ varies from -v_ to v_.
1 2 x X X
The optimal experimental design., x, can. in theory, be found through o

three dimensional search over the feasible region R. One strategy would be

to fix n and, using a computer calculate a three dimensional plot of

’

v _ . ]

; W(x) = Eylx Ey fy.x Min Ex ly 'Y-x[w(d.xf)]y{.y.x]

. f d £'7f
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versus x - X and Vo Figure 3.2 illustrates the 3 dimensional plot for a

fixed n. The plot shows the surface of W(x) as a function of

Ix - x | <v_.
o x

TheCasex1=x2=...=x = X

Suppose we are uncertain about both a and . From (3.2) we see that i

X, =X, = ... =X_=X_, then
2 n o

L 2 0 2
(a.B] Data) a exp{-[n(a - a)° - ZEei(a - a))/20%)
1

so that in this case the data provide no direct information about B. If ir
addition, the prior for (a,B) satisfies
p(a.Blx)) a p(alx)) p(B)
i.e. a and B are a priori independent given X, then
p(a.BlData.x ) a L(z|Data.x ) p(alx ) p(B)
and the posterior marginal for § is the same as the prior marginal for f§.
Intuitively, if B is unknown. the experimental design

= X = X

xl=x2=... n o

is a local maximum for the final expected value since values of X, mear X

will provide information about B and hence tend to reduce the final expected

value.
The Case w(d.xf) = (d - xf)2
In this case
W(x) = Eylx Eyf|y.xVar(xf|yf.y.x)
2 L
= E E E Y. - E E E v e yox)
ylx By lyx B ly. s lygy.x) ylx Fyplyxd xfly.x(*f|’f y»)

Since x, is independent of (x,y). we can explicitly evaluate the first te:

f
so that
2 2 e 2
W(x) = 0"+ x, Eylx Eyfly.x(Exfly.x(xflyf'y'x)) .
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4. BIVARIATE NORMAL PRIOR FOR {a,B)

To calculate W(x) for a particular experimental design we need to

assess a prior distribution for (a.B). Suppose a L B 1 ¢ and a has a

N(a.oa2) distribution while B has a N(b.abz) distribution a priori. Tablc

4.1 gives the posterior bivariate normal parameters given the sufficient

n n .
statistics n, Xx - X_, v., z. = Je, and z_, = Je_(x, - x_). Note that o
o x 1 1 1 2 p 11 o a
032. and Py B do not depend on the observations, y, from the calibration

experiment. The derivation of the posterior parameters in Table 4.1 is

given in the appendix.

Our objective is to calculate W(x) for a given experimental design x.

However, this is in general exceedingly difficult numerically. Hence we :::

also interested in bounds and efficient computational methods for special

cases.

¥ r r £
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(Ee.)[E(x.—x ) +0 /o ] - [2(x -X )][Ze (x -X )]

(n+a /a )[Z(X -X ) + 02/0b ] - [E(Xi—xo)]'

(n+02/aa2)[2ei(xi-xo)] - [3(x;-x,)1(Ze,) |

U
P (n+0°/0 2)[3(x,~x )? + 0°/0,%] - [3(x,-x_)]°

1]
o
+

02[2(x.—x )2 + 02/ob2]

2
g =
a (n+a /o )[E(X X, ) + 0 /o ] - [E(X ~X )]
0 o = 02(n + 02/0a )
B (n+0°/0 2)[3(x;~x )° + 0°/0,%] - [3(x,-x )]
. ) —E(Xi—xo)
affi =~
1(n+02/aa2)[z(xi-xo)2 + 02/0b2]
~o22(x.—x )
cov(a,B) =
(n+o /o, )[E(X -x ) +0 /o ] - [2(x -X )]
where
e, =y, - a- b(xi - xo)

.
e

TABLE 4.1. Parameters of the Posterior Distribution of (a.[)

.- '.{‘l‘.l‘

T

Given x and y
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From the influence diagram, Figure 1.3, we see that at the time of

decision, a and 8 are unknown. Hence we must first calculate the postcrico:

distribution of a and B given n, x - Xor Voo Z) and Z,. The distributio:,

y{ given x_.., y and x is then

f
Nlug * uglxg = %), 52(xf)]
where
52(xf) = 02 + oa2 + 052(xf - xo)2 +
+ 2Cov(a,B)(xf - xo). (4

Using Bayes' theorem

P(xplye.y.x) @ ply;lx..y.x) p(x;)

a  exp{-[y; - uy - ng(x; - x)17/25°(x)) plx;). (4.2

a

Subtract Mo from Ye and let

From (4.2). it is clear that
xg L (yp W) W my
i.e. We and “B are sufficient for X¢ with respect to (yf.y) where for

convenience ... stands for all parameters which depend only on n. x and v

Since we consider n, x and Vo fixed and known in this section, we will or:-

2

these parameters in our conditioning statements. Also o, + 0 and Py

+

B

depend only on n, x, - and our bivariate normal prior parameter valucs.

Hence these will also be omitted henceforth in our conditioning stateme:r.t:
Based on sufficiency considerations for bivariate normal priors. thue

influence diagram i1n Figure 1.3 can be redrawn as in Figure 4.1. Norte th

whenever we needed to use Bayes' theorem (to achieve arrow reversals) 1t v

i
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I
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also helpful at that point to employ sufficiency considerations to reducc
the parameter space.

Calculation of W(x)

(4.2) is the crux of our numerical difficulties since p(xflwf.uﬁ) is
not normal even when X¢ is N(xo,ao2). Figures 4.2 and 4.3 are plots of
E(xflyf) and Var(xflyf) versus y. when the calibration experiment is not
performed (i.e. n = 0). VWere Xy and Ye jointly bivariate normal, Var(xf]y{)
would not depend on yg as it obviously does in Figure 4.3.

Using Figure 4.1 we see that

W(x) = E E Min E
Mg wflup 3 xflwf.uﬁ
When w(d,xf) = {d - xf)2 we have

[w(doxg) fwg. 1p.

W(x) =E E Var(x, |w,.u.).
Hg wfluﬁ £70°08

We can thus numerically calculate W{x) using three nested subroutines for
each x. The computational running time will be proportional to the produc:
of the number of points used in each subroutine.

The Distribution of "fle' up

To calculate the posterior distribution of X¢ given We and “B we necc

first to calculate the distribution of We given x, and uB.

f
. 2 2 . .
Theorem 4.1. p(wfle.uﬁ ) is N[uﬁ(xf - xo), s (xf)] where s (xf) is givern.
by (4.1).
Proof. Clearly E["fle'“g] = E“a E["fle'“a'“ﬁ] = uﬁ(xf - x_). Since x i+
independent of (a.B) and y and (21.22) only appear in g and Mg
Var(wfle,uB) =

E“a [Var(wg[x.. p, . uﬁ)ixf- M5

+ Var“a[E(wfle. My uﬁ)lx{. pB].
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From (4.1) we see that the first term is the same as sQ(xf) which is

constant in (21,22) while the second term is O. QED

5. NUMERICAL CALCULATION OF W(x) WHEN (a,B) IS BIVARTATE NORMAL

The Case When B is Known and w(d.x.) = (d - x)°

As we noted in Section 3, when o, = O a priori, Var(xflwf.uﬁ) depernds

b
on the experimental design only through n.

. 2 2
Theorem 5.1. If o, = 0, X is N(xo. o, } and w(d.xf) = (d - xf) then

W(x) = { b/[0° + 0 °) + 1/0 %)
where o 2 = (n/o2 + 1/0 2)'1.
a a
Proof. Since p(wfle.a.ﬁ = b) is N[b(xf - xo). 02] the predictive density
for We p(wfle, M, = b). is
2,2
N[b(xf - xo). o740 ].
If p(xf) is N(xo. 002) a priori, then by Bayes' theorem
pxglwe) @ p(wglxg) px)
2 2 2 2 2
a exp{-[w; - up(x; - x,)172(c% + 0,%)) expl-(x; - x,)%/20 %],
Collecting terms in the exponents we find
2, 2 2 2.-1
Var(xflwf) = [ b/(c" + o, ) + l/oo ]
while

E(xg lw) = {[6%/(0%+0_%) 1w /b] + x /0 %)

2

[b2/(a +aa2) + 1/002]

Since Var(xf|wf) does not depend on We in this case,

W(x) = Var(xflwf). Qinh
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The Case When X = %Xp = ..o =X =X and w(d,xf) = (d - xf)

In this case we can numerically calculate W(x) using two nested
subroutines. Because of the comparative ease of computation, this is almos:
as good as a closed form solution.

As we saw in Section 3, this choice of x will provide no information
about B. Hence pB = b and

W(x) = waVar(xflwf)

Thus only two nested subroutines are required. In this case We given Xg and

2
uB = b is N[b(xf - xo). s (xf)]
2 2 2 2 2
where s (x{) =0 +0 " +o (xf - xo)
and o 2 (n/o2 + 1/0 2)_1.
a a

The General Case

To numerically calculate W(x) using three nested subroutines we need

the density of up. From Table 4.1 we see that uﬁ is a linear combination of

z4 and zZ,. Since zy and z, are unconditionally bivariate normal it follows
that p, is N(b.o 2) where o 2 depends on the covariance matrix of (z,.z )
B M H 1°72
B Y
It is easy to verify that z, is N(O.ol2) where
2_ 2 2 2 2 2 2
o,” =n"o " + [2(x1 - xo)] o," + no
i
. . 2
while z, is N(O.a2 ) where
2 _ 2 2 2, 3 2.2 2 20 2
o, = [f(xi xo)] I, * [f(xi xo) ] o +o f(xi - xo) .




1 and z,

covariance

Jointly 2z given x,

o, a, b, o, and o, are bivariate normal with

= Cov(zl.z2|o.a.b.x)

%12
n n n n
2 2 2 2
= nl20xy - x0)Je, "+ 1306 - %)) 20, = %)%, % + 02, - x)
Using Table 4.1, let
uﬁ =b + €124 + CoZo
wvhere
n
€y = —[f(xi - xo)]/D
2, 2
Cy = (n+o0 /aa )/D
and

n
D= (n+0°/0 2)[3
2"

It follows that pﬁ is N(b.ou

) '-,'.. e

S I A S R P W NS S T Uy

S
¢

P

SRR SISO A)

n
(xi - xo)2 + 02/ab2] - [f(xi - xo)]2

2) where

B

+ c + 2c¢,c.0

o 12912

2
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APPENDIX

[

’

N
Af DERIVATION OF THE POSTERIOR PARAMETERS IN TABLE 4.1
v
.,

{j Suppose x and y have joint density

"

oy p(x.y) a exp[-(ax2 + bx + cy2 + dy + exy)/2]
<

N

where a, b, ¢, d and e are constants. Then it follows that the poir (x.v)
has a bivariate normal distribution: i.e.,
p(x.y)

exp(-[(x-ua)2/002-2ggg(x—ua)(y-up)/oaoﬁ + (y-gp)2/oﬁ2]/2(1-p2)}

2 27 oaaB J(l—paﬁ2)

. By matching coefficients in corresponding terms in the exponents g pf. o

o

Oﬁ‘ and paB can be expressed in terms of a, b, c, d, and e.

= The coefficent of x2 is a = 1/[o 2(1 - p 2)].
N 2 "2 s
N The coefficent of y~ is ¢ = l/[cv[3 (1 - paﬁ )]
The coefficient of xy is e = -2p/[(1] - paﬁz)aaaﬁ]'
Now 4p2 = e2/ac implies p = -e/s{ac and
2 2 2
o = 17a(1 - Pap ) = 4c/[4ac - €]
052 = 1/¢(1 - paﬁ2) = 4a/[4ac - €]
From the coefficient of x we have
% 2 2
; b= 2ua/oa + 2paB uﬁ/oaoB]/(l ~ Pap )
" while from the coefficient of y we have
. 2 2
: d = [—2“ﬁ/aﬁ + 2paﬁ “a/oaoﬁ]/(l " Pap )
e,
N

e .. - - s
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By taking o, times the first and paﬁ o’3 times the second equation

boa + dpaBUB = -2pa/oﬁ

so that

L = -[bo 2 +dp 0012

a a af “a B

- -[bic/(4ac - €2) - dedlacr2(ac(4ac - e)1/2
= [de - 2bc]/[4ac - e2]

and also

Hg = [be - 2ad]/[4ac - e2]
etc.
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